登陆后访问



H
I
S
T
O
R
Y

两两接触的等粗且无限长的圆柱体

大家在吃饭喝酒时是否注意到了这样的事情:三个人碰杯时,每个人的杯子都能同时和其他两个人的杯子相接触,很完美;但是四个人碰杯时,任一时刻总会有两个人碰不到杯,非常尴尬。有一次和三个好朋友吃饭,四人碰杯时又发生了这种尴尬的情况,突然有一个人异想天开,把他的杯子放到了另外三个杯子的上面,从而实现了四个杯子两两接触!我们自然引出了这样一个问题:如果 n 个全等的圆柱体两两相接触,则 n 最大是多少?

图1
对于不同形状的圆柱体,答案可能是不一样的。 Martin Gardner 在 Hexaflexagons and other mathematical diversions 一书中提到,我们可以精巧地摆放 5 枚硬币,使得它们两两相接触,如上图所示(注意,最底下还藏着一枚硬币)。同时, Martin Gardner 问到,能否摆放 6 支香烟让它们两两接触?一个经典的答案如下:

图2
令 Martin Gardner 本人也感到吃惊的是, George Rybicki 和 John Reynolds 指出,7 支香烟两两接触也是有可能的。他们给出的构造如下:

图3
两两接触的全等圆柱体最多可以有多少个? 7 个已经是最多的了吗?如果圆柱体的高度与半径之比有所限制,这会对问题的答案产生怎样的影响?这些问题都还有待解决。
1968 年, John Littlewood 提出了这样一个问题:在空间中,是否存在 7 个单位半径的无限长圆柱体,使得它们两两相接触?这个问题显然更难一些,因为我们没法利用圆柱体的顶面和底面了。
根据 MathPuzzle 的消息,最近, Sándor Bozóki 、 Tsung-Lin Lee 和 Lajos Rónyai 解决了这个问题。他们建立了一个非常非常庞大的方程组,里面有 20 个未知数以及 20 个方程:

图4
通过某些数值计算方法,他们得到了两组不同的解。其中一组解如下:

图5
下面则是另外一组解:

图6


2005 年, András Bezdek 证明了任意 25 个无限长的等粗圆柱体中,总存在两个相离的圆柱体,从而说明了满足要求的圆柱体数目 n 存在一个上界。那么, n 的最大值是否就是 7 呢?这个问题目前也没有定论。

 

声明:文章转自Matrix67博客,版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请联系删除,谢谢。

相关文章

奇妙的数字:巧合数

Posted by - November 10, 2017 1763
世界上,无时无刻不在发生着一些看似偶然的巧合,有让人遗憾的,也有让人庆幸的,在数学上,也有很多的巧合。

数学之美|填色游戏

Posted by - November 09, 2017 2060
人们提起数学之“美”时常意指其抽象涵义,罗素称之为“朴素冷峻之美……庄严纯净,能够达到严格的完美”。然而,人类也一向从数学中发现审美上的...