登陆后访问



H
I
S
T
O
R
Y

趣题:每个小点最后都会回到自己原来的位置上吗?

最近,来自 wavegrower 的一张 gif 动画红遍了 reddit 。有人提出了这么一个问题:每个小点最后都会回到自己原来的位置上吗?注意,这些小点并不是沿着一个回路在运动,而是沿着三个交替出现的回路在运动。

图1
答案是肯定的。 math 版上的 OmnipotentEntity 给出了一个简短的证明。假设某个地方的小点出发后永远不会回到原地。由于小点的运动规律是三步一个周期,因此每三步之后从此处出发的小点将会拥有完全相同的命运——永远不会回到原地。既然从这里出发的小点会不断地发生有去无回的情况,那么总有一个时候小点会被用光,此时就再也没有小点能从这里出发了。但这与我们看到的实际情况相矛盾:每个地方的小点都是用之不竭的。
熟悉群论的朋友会很快发现,这个结论几乎是显然的。小点的每一步运动都形成了一个置换,三个置换的复合本质上也还是一个置换,而这个置换的足够多次幂一定会变成单位置换。这意味着,不但每个点都能回到自己原来的位置,而且所有点能同时回到自己原来的位置(后者可能需要更长的时间)。事实上,有限群中的任意一个元素都有一个有限的阶,因而如果某类变换操作能构成一个有限群的话,不断地执行某一个操作,或者不断地循环执行某几个操作,最后总有一个时刻你会发现,一切又都重新变回了原样。拿出一副新的扑克牌,每次洗牌时都把牌分成两半并把它们完美地交叉在一起,那么不断这样洗下去之后,整副牌总会在某个时候重新变得有序。找一个复原好了的魔方,循环执行几个固定的操作,魔方很快就会被彻底打乱,但最终一定会奇迹般地再次复原。

 

声明:文章转自Matrix67博客,版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请联系删除,谢谢。

相关文章

奇妙的数字:巧合数

Posted by - November 10, 2017 1762
世界上,无时无刻不在发生着一些看似偶然的巧合,有让人遗憾的,也有让人庆幸的,在数学上,也有很多的巧合。

数学之美|填色游戏

Posted by - November 09, 2017 2060
人们提起数学之“美”时常意指其抽象涵义,罗素称之为“朴素冷峻之美……庄严纯净,能够达到严格的完美”。然而,人类也一向从数学中发现审美上的...