登陆后访问



H
I
S
T
O
R
Y

趣题:能否在等边三角形点阵中画一个正方形?

这是一个非常有趣的问题:能否在一个无限大的等边三角形点阵中选取四个点,使得这四个点恰好构成一个正方形?这个问题有一个非常简单巧妙的解法,你能想到吗?

图1

图2
答案:不可能。为了证明这一点,首先注意到,如果选定三角形点阵中任意两个不同的点,则以这两个点为顶点作等边三角形,所得的第三个顶点也一定在点阵中。这是因为,以任意一点为中心,将整个平面旋转 60 度,新的点阵与原来的点阵仍然是重合的。等边三角形的第三个顶点,其实可以看作是已知两点中的其中一点绕另一点旋转 60 度所得的,自然也就还在点阵中了。

图3
下面,假设点阵中存在正方形,则我们一定能找到一个最小的正方形。以正方形的每条边为边,向内作等边三角形,所得的第三个顶点也仍然在点阵上。然而,这四个新的顶点将会构成一个更小的正方形,于是产生矛盾。所以,我们永远无法在等边三角形点阵中作出一个正方形来。

 

大家有什么其他的证明方法吗?

 

题目来源:http://www.cut-the-knot.org/Curriculum/Geometry/DavidRadcliffe.shtml


声明:文章转自Matrix67博客,版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请联系删除,谢谢。

相关文章

奇妙的数字:巧合数

Posted by - November 10, 2017 1788
世界上,无时无刻不在发生着一些看似偶然的巧合,有让人遗憾的,也有让人庆幸的,在数学上,也有很多的巧合。

数学之美|填色游戏

Posted by - November 09, 2017 2093
人们提起数学之“美”时常意指其抽象涵义,罗素称之为“朴素冷峻之美……庄严纯净,能够达到严格的完美”。然而,人类也一向从数学中发现审美上的...