登陆后访问



H
I
S
T
O
R
Y

最帅的Menelaus定理证明方法

图1
Menelaus 定理是平面几何中用于判断三点共线的一个常用定理。在 △ABC 中,点 D 、 E 、 F 分别在 BC 、 AC 、 AB 所在直线上,若 D 、 E 、 F 三点共线,则有 AF/BF · BD/CD · CE/AE = 1 。 Menelaus 定理的证明方法有很多,今天我见到了我所见过的证明方法中最帅的一种,它解决了之前很多证明方法缺乏对称性的问题,完美展示了几何命题中的对称之美。

图2
过 DEF 所在直线作一个新的平面(没错,辅助线做到三维空间中去了)。分别过 A 、 B 、 C 作原平面的垂线,与新的平面交于点 A’ 、 B’ 、 C’ 。于是,我们有:
      AA’ / BB’ = AF / BF
      BB’ / CC’ = BD / CD
      CC’ / AA’ = CE / AE
三式乘在一块儿,结论得证。


来源:http://www.cut-the-knot.org/proofs/Menelaus.shtml


声明:文章转自Matrix67博客,版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请联系删除,谢谢。

相关文章

奇妙的数字:巧合数

Posted by - November 10, 2017 1764
世界上,无时无刻不在发生着一些看似偶然的巧合,有让人遗憾的,也有让人庆幸的,在数学上,也有很多的巧合。

数学之美|填色游戏

Posted by - November 09, 2017 2060
人们提起数学之“美”时常意指其抽象涵义,罗素称之为“朴素冷峻之美……庄严纯净,能够达到严格的完美”。然而,人类也一向从数学中发现审美上的...