登陆后访问



H
I
S
T
O
R
Y

非常奇妙的证明:图形必在格点之外

从cut-the-knot上看到的。


问题:设想一个平面上布满间距为1的横纵直线,形成由一个个1×1正方形组成的网格。任意给一个面积小于1个单位的图形,证明这个图形总能放在网格中而不包含任何一个格点。

图1


证明:我们可以这样考虑这个问题:把图形随意放在网格中,如何移动网格使每个格点都在图形外面。


现在我们把给定的图形随意放在网格中。然后沿着网格线把包含有图形的网格切成1×1的小格子,从网格中拿出来。把它们重叠起来(不旋转),再想像这些格子是透明的,而图形是不透明的。从上往下看这一叠格子,你看到的会是这个图形的各部分重叠地放在一个格子中,仿佛一个沾有污渍的方块。很显然这些污渍不会布满整个方块(图形面积小于一个格子的面积),方块上总有一块干净的地方。现在我们用一颗针从一个干净的地方刺下去,把这些重起来的格子刺穿。把这些格子放回原来的网格中,你看到的会是每一个有图形的方格内都有一个针眼,这些针眼都不在图形内。现在可以把原来的网格擦掉了,这几个针眼可以看作是新网格的格点。按针眼的位置重画新的网格,那么这个图形内决不会有新网格的格点,此时,结论也就证到了。

 

声明:文章转自Matrix67博客,版权归原作者所有,转载仅供学习使用,不用于任何商业用途,如有侵权请联系删除,谢谢。

相关文章

奇妙的数字:巧合数

Posted by - November 10, 2017 1763
世界上,无时无刻不在发生着一些看似偶然的巧合,有让人遗憾的,也有让人庆幸的,在数学上,也有很多的巧合。

数学之美|填色游戏

Posted by - November 09, 2017 2060
人们提起数学之“美”时常意指其抽象涵义,罗素称之为“朴素冷峻之美……庄严纯净,能够达到严格的完美”。然而,人类也一向从数学中发现审美上的...