登陆后访问



H
I
S
T
O
R
Y

最热门的列表

魅力无穷的完全数

Posted by - January 30, 2018 0   926
公元前3世纪时,古希腊数学家对数字情有独钟。他们在对数的因数分解中,发现了一些奇妙的性质,如有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是...

趣题:货架上的听装可乐

Posted by - February 12, 2018 0   925
有个放听装可乐的货架,它的宽度要比四听可乐的直径稍微大一些。把10听可乐放进这个货架里,堆叠成一个三角形。虽然底下三层可乐罐歪歪斜斜有高有低,但最顶上的那听可乐一定位于货架的正中心,也就是说...

那些神秘的数学常数

Posted by - February 09, 2018 0   923
除了那些众所周知的基本常数之外,还有很多非主流的数学常数,它们的存在性和无理性同样给它们赋予了浓重的神秘色彩。今天,就让我们一起来看一看,数学当中到底有哪些神秘的无理常数。

选举制度的学问

Posted by - February 05, 2018 0   921
每个投票者把自己手中的票投给其中一位候选人,得票数最多的候选人即获胜,因为他的支持者最多。这看上去似乎挺合理。但在实际生活中,这种选举制度并不见得总是合理的,得票数最多的候选人很可能并不是大...

千万不要迷信规律:大反例合集

Posted by - March 01, 2018 0   919
数学猜想并不总是对的,错误的数学猜想不占少数。关键在于,有时反例太大,找出反例实在是太困难了。这篇日志收集了很多“大反例”的例子,里面提到的规律看上去非常诱人,要试到相当大的数时才会出现第一...

趣题:直觉 VS 理性思考 经典概率问题

Posted by - February 27, 2018 0   919
各种违反常理的错觉图片和数学事实告诉我们,我们的直觉并不可靠。其实这本身就是一种错觉,它让我们觉得我们的直觉总是不可信的。而事实上,多数情况下我们的直觉都是可信的,而理性的思考反而会带来一些...

令人敬畏的十维空间

Posted by - February 27, 2018 0   911
到了十维空间后,中心球的直径将超过十维立方体的边长,这个中心球将突破立方体的边界!被围在里面的中心球居然比原来的N维立方体还大,这显然违反了大多数人的直觉;如果你能想象出这个画面来,你就牛B...

神奇的分形艺术(四):Julia集和Mand...

Posted by - February 27, 2018 0   910
考虑复数函数f(z)=z^2+c,不同的复数c对应着不同的Julia集。也就是说,每取一个不同的c你都能得到一个不同的Julia集分形图形,并且令人吃惊的是每一个分形图形都是那么美丽。Man...